If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+15y=100
We move all terms to the left:
y^2+15y-(100)=0
a = 1; b = 15; c = -100;
Δ = b2-4ac
Δ = 152-4·1·(-100)
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-25}{2*1}=\frac{-40}{2} =-20 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+25}{2*1}=\frac{10}{2} =5 $
| 6(n+24)=180 | | 300x+0.05x=600x+0.01x | | 6.6x-10.5=35.7 | | w4+3=8 | | 3x-4=-2x+26 | | 53=8+4d | | 3(x+5)^2-1=146 | | −4.5+6x=7.5 | | 3x3+4=28 | | -4(2x-3)=-8+12 | | (35x-5)=-3 | | n+7+3n=23 | | 175m-75m+48750=50000-150m | | 7m+174=4m+156 | | 6x=-2x=3 | | (4x+24)+(9x-26)=180 | | x^2-5.5-20=0 | | 7m+174+4m+156=180 | | 116+6x+32=180 | | 62=(6m-1)+4m | | 5(x-12)=140 | | X=(1/3x)+12 | | 8p-3p=0 | | m3+5=-2 | | 34/5+x=73/10 | | 5x-20+7x=180 | | U=-10x | | 5c=42-c | | 43+62+57+55+m=4 | | 10x-4=1/2 | | 6.3x-10.1=8.8 | | (m-9)(7-m)=0 |